banner
HuggingLLM

HuggingLLM

Make it & Share it!
x

Weaviate + Google Vertex AI實現多模態嵌入

多模態嵌入的概述#

多模態嵌入(Multimodal Embeddings)指的是透過對不同數據模式(如文本、圖像、音頻、視頻等)進行嵌入表示。透過這種技術,Weaviate 能夠將各種模式的輸入(如文本和圖像)轉化為統一的向量表示,用於高效的相似性搜索或其他機器學習任務。Weaviate 與 Google Vertex AI 的集成使得這一功能變得更加易用和強大。Weaviate 與 Google AI 多模態嵌入的集成使得用戶能夠處理和搜索不同類型的多模態數據,這對於需要在大規模數據庫中處理文本、圖像、視頻等不同數據模式的場景非常有用。集成的 Google Vertex AI 模型不僅性能強大,還能夠支持各種複雜的語義和多模態搜索,提升了數據管理和查詢的智能化水平。

image

使用 Docker 部署 Weaviate 實例#

services:
  weaviate:
    command:
    - --host
    - 0.0.0.0
    - --port
    - '8080'
    - --scheme
    - http
    image: cr.weaviate.io/semitechnologies/weaviate:1.26.4
    ports:
    - 8080:8080
    - 50051:50051
    volumes:
    - ./weaviate_data:/var/lib/weaviate
    - /root/.config/gcloud/application_default_credentials.json:/etc/weaviate/gcp-credentials.json
    restart: on-failure:0
    environment:
      QUERY_DEFAULTS_LIMIT: 25
      AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'true'
      PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
      DEFAULT_VECTORIZER_MODULE: 'multi2vec-palm'
      ENABLE_MODULES: 'multi2vec-palm,ref2vec-centroid'
      CLUSTER_HOSTNAME: 'node1'
      GOOGLE_APPLICATION_CREDENTIALS: '/etc/weaviate/gcp-credentials.json'
      USE_GOOGLE_AUTH: 'true'

你必須提供合法的 API 憑證才能正確的使用 Vertex AI 集成,具體的配置方式你可以查看API credentials

編寫代碼#

連接到 Weaviate 並檢查連接#

import weaviate

client = weaviate.connect_to_local()

client.is_ready()

創建 Collection#

from weaviate.classes.config import Configure

if client.collections.exists("AnimeGirls"):
    client.collections.delete("AnimeGirls")

client.collections.create(
    name="AnimeGirls",
    vectorizer_config=Configure.Vectorizer.multi2vec_palm(
        image_fields=["image"],
        text_fields=["text"],
        video_fields=["video"],
        project_id="neurosearch-436306",
        location="europe-west1",
        model_id="multimodalembedding@001",
        dimensions=1408,
    ),
)

創建工具函數#

import base64
def to_base64(file_path: str) -> str:
    with open(file_path, "rb") as file:
        return base64.b64encode(file.read()).decode("utf-8")

導入數據#

import os
from weaviate.util import generate_uuid5
anime_girls = client.collections.get("AnimeGirls")

sources = os.listdir("./images/")

with anime_girls.batch.dynamic() as batch:
    for name in sources:
        print(f"Adding {name}")

        path = "./images/" + name

        batch.add_object(
            {
                "name": name,
                "image": to_base64(path),
                "path": path,
                "mediaType": "image",
            },
            uuid=generate_uuid5(name),
        )

檢查所有數據是否導入成功#

if len(anime_girls.batch.failed_objects) > 0:
    print(f"Failed to import {len(anime_girls.batch.failed_objects)} objects")
    for failed_object in anime_girls.batch.failed_objects:
        print(f"e.g. Failed to import object with error: {failed_object.message}")
else:
    print("All objects imported successfully")

通過 Text 檢索#

import json
response = anime_girls.query.near_text(
    query="Seeing a girl through glasses",
    return_properties=["name", "path", "mediaType"],
    limit=2,
)

for obj in response.objects:
    print(json.dumps(obj.properties, indent=2))
from IPython.display import Image, display

def display_image(item: dict):
    path = item["path"]
    display(Image(path, width=300))

display_image(response.objects[0].properties)

image

通過 Image 檢索#

response = anime_girls.query.near_image(
    near_image=to_base64("./images/121955436_p0_master1200.jpg"),
    return_properties=["name", "path", "mediaType"],
    limit=2,
)

# for obj in response.objects:
#     print(json.dumps(obj.properties, indent=2))

display_image(response.objects[0].properties)

image

混合檢索#

response = anime_girls.query.hybrid(
    query="Seeing a girl through glasses",
    return_properties=["name", "path", "mediaType"],
    limit=2,
)

# for obj in response.objects:
#     print(json.dumps(obj.properties, indent=2))

display_image(response.objects[0].properties)

返回所有向量#

import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# 假設embedding是你的1408維數據
embedding = np.array([item.vector['default'] for item in anime_girls.iterator(include_vector=True)])

# 使用PCA將1408維數據降到2維
pca = PCA(n_components=2)
reduced_embedding = pca.fit_transform(embedding)

# 繪製降維後的數據
plt.figure(figsize=(10, 7))
plt.scatter(reduced_embedding[:, 0], reduced_embedding[:, 1], alpha=0.5)
plt.title('PCA of AnimeGirls Embeddings')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()

image

載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。