banner
HuggingLLM

HuggingLLM

Make it & Share it!
x

Weaviate + Google Vertex AI实现多模态嵌入

多模态嵌入的概述#

多模态嵌入(Multimodal Embeddings)指的是通过对不同数据模式(如文本、图像、音频、视频等)进行嵌入表示。通过这种技术,Weaviate 能够将各种模式的输入(如文本和图像)转化为统一的向量表示,用于高效的相似性搜索或其他机器学习任务。Weaviate 与 Google Vertex AI 的集成使得这一功能变得更加易用和强大。Weaviate 与 Google AI 多模态嵌入的集成使得用户能够处理和搜索不同类型的多模态数据,这对于需要在大规模数据库中处理文本、图像、视频等不同数据模式的场景非常有用。集成的 Google Vertex AI 模型不仅性能强大,还能够支持各种复杂的语义和多模态搜索,提升了数据管理和查询的智能化水平。

image

使用 Docker 部署 Weaviate 实例#

services:
  weaviate:
    command:
    - --host
    - 0.0.0.0
    - --port
    - '8080'
    - --scheme
    - http
    image: cr.weaviate.io/semitechnologies/weaviate:1.26.4
    ports:
    - 8080:8080
    - 50051:50051
    volumes:
    - ./weaviate_data:/var/lib/weaviate
    - /root/.config/gcloud/application_default_credentials.json:/etc/weaviate/gcp-credentials.json
    restart: on-failure:0
    environment:
      QUERY_DEFAULTS_LIMIT: 25
      AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'true'
      PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
      DEFAULT_VECTORIZER_MODULE: 'multi2vec-palm'
      ENABLE_MODULES: 'multi2vec-palm,ref2vec-centroid'
      CLUSTER_HOSTNAME: 'node1'
      GOOGLE_APPLICATION_CREDENTIALS: '/etc/weaviate/gcp-credentials.json'
      USE_GOOGLE_AUTH: 'true'

你必须提供合法的 API 凭证才能正确的使用 Vertex AI 集成,具体的配置方式你可以查看API credentials

编写代码#

连接到 Weaviate 并检查连接#

import weaviate

client = weaviate.connect_to_local()

client.is_ready()

创建 Collection#

from weaviate.classes.config import Configure

if client.collections.exists("AnimeGirls"):
    client.collections.delete("AnimeGirls")

client.collections.create(
    name="AnimeGirls",
    vectorizer_config=Configure.Vectorizer.multi2vec_palm(
        image_fields=["image"],
        text_fields=["text"],
        video_fields=["video"],
        project_id="neurosearch-436306",
        location="europe-west1",
        model_id="multimodalembedding@001",
        dimensions=1408,
    ),
)

创建工具函数#

import base64
def to_base64(file_path: str) -> str:
    with open(file_path, "rb") as file:
        return base64.b64encode(file.read()).decode("utf-8")

导入数据#

import os
from weaviate.util import generate_uuid5
anime_girls = client.collections.get("AnimeGirls")

sources = os.listdir("./images/")

with anime_girls.batch.dynamic() as batch:
    for name in sources:
        print(f"Adding {name}")

        path = "./images/" + name

        batch.add_object(
            {
                "name": name,
                "image": to_base64(path),
                "path": path,
                "mediaType": "image",
            },
            uuid=generate_uuid5(name),
        )

检查所有数据是否导入成功#

if len(anime_girls.batch.failed_objects) > 0:
    print(f"Failed to import {len(anime_girls.batch.failed_objects)} objects")
    for failed_object in anime_girls.batch.failed_objects:
        print(f"e.g. Failed to import object with error: {failed_object.message}")
else:
    print("All objects imported successfully")

通过 Text 检索#

import json
response = anime_girls.query.near_text(
    query="Seeing a girl through glasses",
    return_properties=["name", "path", "mediaType"],
    limit=2,
)

for obj in response.objects:
    print(json.dumps(obj.properties, indent=2))
from IPython.display import Image, display

def display_image(item: dict):
    path = item["path"]
    display(Image(path, width=300))

display_image(response.objects[0].properties)

image

通过 Image 检索#

response = anime_girls.query.near_image(
    near_image=to_base64("./images/121955436_p0_master1200.jpg"),
    return_properties=["name", "path", "mediaType"],
    limit=2,
)

# for obj in response.objects:
#     print(json.dumps(obj.properties, indent=2))

display_image(response.objects[0].properties)

image

混合检索#

response = anime_girls.query.hybrid(
    query="Seeing a girl through glasses",
    return_properties=["name", "path", "mediaType"],
    limit=2,
)

# for obj in response.objects:
#     print(json.dumps(obj.properties, indent=2))

display_image(response.objects[0].properties)

返回所有向量#

import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# 假设embedding是你的1408维数据
embedding = np.array([item.vector['default'] for item in anime_girls.iterator(include_vector=True)])

# 使用PCA将1408维数据降到2维
pca = PCA(n_components=2)
reduced_embedding = pca.fit_transform(embedding)

# 绘制降维后的数据
plt.figure(figsize=(10, 7))
plt.scatter(reduced_embedding[:, 0], reduced_embedding[:, 1], alpha=0.5)
plt.title('PCA of AnimeGirls Embeddings')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()

image

加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。